Role of Transmembrane Segment S5 on Gating of Voltage-dependent K+ Channels
نویسندگان
چکیده
منابع مشابه
Role of Transmembrane Segment S5 on Gating of Voltage-dependent K 1 Channels
The cytoplasmic half of S5 (5 9 S5) has been identified as part of the inner mouth of the pore based on evidence that mutations in this region greatly alter single channel conductance, 4-aminopyridine (4-AP) block and the rate of channel closing upon repolarization (deactivation). The latter effect, suggestive of a role for 5 9 S5 in channel gating was investigated in the present study. The bio...
متن کاملRole of Transmembrane Segment S5 on Gating of Voltage-dependent K+ Channels
The cytoplasmic half of S5 (5'S5) has been identified as part of the inner mouth of the pore based on evidence that mutations in this region greatly alter single channel conductance, 4-aminopyridine (4-AP) block and the rate of channel closing upon repolarization (deactivation). The latter effect, suggestive of a role for 5'S5 in channel gating was investigated in the present study. The biophys...
متن کاملA Role for the S0 Transmembrane Segment in Voltage-dependent Gating of BK Channels
BK (Maxi-K) channel activity is allosterically regulated by a Ca2+ sensor, formed primarily by the channel's large cytoplasmic carboxyl tail segment, and a voltage sensor, formed by its transmembrane helices. As with other voltage-gated K channels, voltage sensing in the BK channel is accomplished through interactions of the S1-S4 transmembrane segments with the electric field. However, the BK ...
متن کاملDeterminants of Voltage-Dependent Gating and Open-State Stability in the S5 Segment of Shaker Potassium Channels
The best-known Shaker allele of Drosophila with a novel gating phenotype, Sh(5), differs from the wild-type potassium channel by a point mutation in the fifth membrane-spanning segment (S5) (Gautam, M., and M.A. Tanouye. 1990. Neuron. 5:67-73; Lichtinghagen, R., M. Stocker, R. Wittka, G. Boheim, W. Stühmer, A. Ferrus, and O. Pongs. 1990. EMBO [Eur. Mol. Biol. Organ.] J. 9:4399-4407) and causes ...
متن کاملVoltage Gating of Shaker K+ Channels
Ionic (Ii) and gating currents (Ig) from noninactivating Shaker H4 K+ channels were recorded with the cut-open oocyte voltage clamp and macropatch techniques. Steady state and kinetic properties were studied in the temperature range 2-22 degreesC. The time course of Ii elicited by large depolarizations consists of an initial delay followed by an exponential rise with two kinetic components. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of General Physiology
سال: 1997
ISSN: 0022-1295,1540-7748
DOI: 10.1085/jgp.109.6.767